จานรอบดาวฤกษ์
จานรอบดาวฤกษ์ (อังกฤษ: circumstellar disc, circumstellar disk) คือ จานพอกพูนมวลของสสารที่มีรูปทรงเป็นทอรัส, แพนเค้กหรือวงแหวน ประกอบด้วย แก๊ส, ฝุ่นคอสมิก, เศษดาวเคราะห์, ดาวเคราะห์น้อยและเศษชิ้นส่วนจากการชนในวงโคจรรอบดาวฤกษ์ รอบ ๆ ดาวฤกษ์ที่อายุน้อยที่สุด พวกมันเป็นแหล่งกักเก็บสสารที่ดาวเคราะห์อาจก่อตัวขึ้นมา สำหรับดาวฤกษ์ที่มีอายุ พวกมันบ่งชี้ว่ามีการก่อตัวของเศษดาวเคราะห์ และรอบ ๆ ดาวแคระขาว พวกมันบ่งชี้ว่าสสารของดาวเคราะห์รอดพ้นจากการวิวัฒนาการของดาวฤกษ์ทั้งหมด จานดังกล่าวสามารถแสดงออกมาได้หลายรูปแบบ
ลักษณะของจานรอบดาวฤกษ์แต่ละแบบ
[แก้]ดาวฤกษ์อายุน้อย
[แก้]ในทฤษฎีมาตรฐานของการก่อตัวของดาวฤกษ์นั้น ดาวฤกษ์อายุน้อย (หรือดาวฤกษ์ก่อนเกิด) เกิดจากการหดตัวด้วยความโน้มถ่วงของมวลสารบางส่วนภายในเมฆโมเลกุลขนาดยักษ์ วัสดุที่ถูกดึงดูดให้เข้ามารวมตัวกันนี้มีโมเมนตัมเชิงมุม และก่อตัวเป็นจานดาวเคราะห์ก่อนเกิดที่มีก๊าซเป็นส่วนประกอบขึ้นมาล้อมรอบดาวฤกษ์อายุน้อยที่กำลังหมุนรอบตัวเอง จานรอบดาวฤกษ์ที่ก่อตัวขึ้นประกอบไปด้วยก๊าซและฝุ่นหนาแน่น และยังคงมีสสารโดนดูดเข้าไปยังใจกลางดาวอยู่เรื่อย ๆ แผ่นจานมีมวลเพียงไม่กี่เปอร์เซ็นต์ของมวลดาวฤกษ์ใจกลาง และก๊าซส่วนใหญ่ซึ่งเป็นองค์ประกอบหลักคือไฮโดรเจน เหตุการณ์การพอกพูนจะกินเวลานานหลายล้านปี โดยปกติแล้วมวลจะค่อย ๆ ถูกดึงดูดเข้าไปสั่งสมบนดาวที่ใจกลางเรื่อย ๆ ประมาณ 1 ส่วนสิบล้านเท่าไปจนถึง 1 ส่วนพันล้านเท่าของมวลดวงอาทิตย์ต่อปี[2]
แผ่นจานจะค่อย ๆ เย็นตัวลงในช่วงที่ยังเป็นวัตถุดาวฤกษ์อายุน้อย อนุภาคฝุ่นที่ประกอบจากหินและน้ำแข็งจะก่อตัวขึ้นภายในจาน และอาจเกาะรวมตัวกันแล้วกลายเป็นดาวเคราะห์ในที่สุด หากมวลของจานมีมากพอ การเกาะรวมตัวกันจะยิ่งเร่งขึ้นไปอีกและเกิดเป็นวัตถุต้นกำเนิดดาวเคราะห์ขึ้น การก่อตัวของระบบดาวเคราะห์เป็นผลตามธรรมชาติของกระบวนการก่อตัวดาวฤกษ์ สำหรับดาวฤกษ์แบบคล้ายดวงอาทิตย์ โดยปกติจะใช้เวลาประมาณ 100 ล้านปีในการวิวัฒนาการไปสู่แถบลำดับหลัก
สำหรับดาวฤกษ์มวลค่อนข้างต่ำเช่นดาวฤกษ์ชนิด ที วัวนั้นโดยทั่วไปจะมีแผ่นจานรอบดาวฤกษ์อยู่ อย่างไรก็ตาม ในดาวที่มีมวลมากกว่านั้น เช่น ดาวเฮอร์บิก เออี/บีอีนั้น คาดว่าความดันรังสีจากดาวฤกษ์ใจกลางจะแรงมากและเป็นตัวขัดขวางการก่อตัวของจาน อย่างไรก็ตาม การศึกษาล่าสุดได้ให้หลักฐานทั้งทางทฤษฎีและเชิงสังเกตการณ์สำหรับการก่อตัวของจานรอบดาวเฮอร์บิก เออี/บีอี ซึ่งถูกตรวจพบโดยตรงเช่นกัน[3] นอกจากนี้ยังมีผลลัพธ์ที่บ่งชี้ถึงการมีอยู่ของจานในดาวฤกษ์อายุน้อยที่มีมวลสูงกว่านี้อีกด้วย[4]
ดาวฤกษ์ในแถบลำดับหลัก
[แก้]เมื่อดาวฤกษ์วิวัฒนาการเข้าสู่ช่วงลำดับหลัก จานรอบดาวฤกษ์จะค่อย ๆ หายไป ส่วนใหญ่แล้วจะหายไปจากกระบวนการการระเหยด้วยแสง ในขั้นตอนนี้ ถ้ามีจานรอบดาวฤกษ์อยู่มักจะเป็นจานที่อยู่แค่ชั่วคราว หลังจากที่อนุภาคที่เล็กละเอียดกว่าส่วนใหญ่ได้สูญเสียไปโดยปรากฏการณ์พอยน์ติง–รอเบิร์ตสัน ความดันรังสี ฯลฯ ฝุ่นจากการกระทบของวัตถุท้องฟ้าจะก่อตัวเป็นจานเศษซากขึ้น[6]
ในช่วงลำดับหลัก จานรอบดาวฤกษ์ประเภทต่าง ๆ นั้นเป็นที่รู้จักกันดีว่าวิวัฒนาการมาจากจานก่อกำเนิดดาวเคราะห์ ตัวอย่างเช่น มีจานรอบดาวฤกษ์ชนิดบีอี ซึ่งกลไกการก่อตัวไม่ชัดเจน[9]
ตัวอย่างในระบบสุริยะ
[แก้]เศษซากต่าง ๆ ที่ประกอบขึ้นเป็นแผ่นจานในระบบสุริยะประกอบไปด้วย:
- แถบดาวเคราะห์น้อย คือกลุ่มของวัตถุขนาดเล็กในระบบสุริยะที่อยู่ระหว่างวงโคจรของดาวอังคาร และ ดาวพฤหัสบดี นอกจากนี้ยังเป็นแหล่งกำเนิดของเมฆฝุ่นระหว่างดาวเคราะห์
- แถบไคเปอร์ เป็นพื้นที่หนาแน่นของวัตถุท้องฟ้านอกวงโคจรของดาวเนปจูน
- แถบหินกระจาย เป็นพื้นที่หนาแน่นของวัตถุที่กระจัดกระจายออกจากแถบไคเปอร์
- เมฆฮิลส์ เป็นกลุ่มของวัตถุท้องฟ้าที่กระจายเป็นวงแหวนรอบขอบด้านในของเมฆออร์ต เมฆออร์ตชั้นนอกมีรูปร่างใกล้เคียงทรงกลมมากกว่า
หลังจากพ้นลำดับหลัก
[แก้]มวลสารรอบดาวฤกษ์ที่พบรอบดาวฤกษ์ที่พ้นจากลำดับหลักมาแล้วนั้นเกิดจากการขับมวลออกจากดาวฤกษ์ใจกลาง มวลสารรอบดาวฤกษ์นั้นมีรูปร่างหลากหลายตั้งแต่เปลือกสมมาตรทรงกลมไปจนถึงโครงสร้างที่มีสมมาตรแบบหมุนคล้ายแผ่นจาน โครงสร้างของมวลสารรอบดาวฤกษ์ของดาวยักษ์ในแขนงดาวยักษ์เชิงเส้นกำกับนั้นเกือบจะเป็นทรงกลมเมื่อดูในภาพรวม แต่เมื่อวิวัฒนาการต่อไปจนกลายเป็นเนบิวลาดาวเคราะห์ มักจะแสดงรูปร่างที่มีสมมาตรแบบหมุน เช่น แผ่นจานรีหรือเป็นเส้นกระจายออกไปจากสองขั้วเหนือใต้ ดาวฤกษ์หลังแขนงยักษ์เชิงเส้นกำกับซึ่งเป็นช่วงที่อยู่ในระหว่างวิวัฒนาการช่วงนั้นถูกคาดการณ์กันมานานแล้วว่าน่าจะมีจานรอบดาวฤกษ์ และเพิ่งจะมีการพบหลักฐานโดยตรง
ตัวอย่างเช่น จากการสังเกตการณ์อินเทอร์เฟอโรเมทรีที่มีความละเอียดสูงได้ตรวจพบจานรอบดาวฤกษ์ที่มีเส้นผ่านศูนย์กลางภายในเท่ากับ 10 AU รอบดาว IRAS 08544-4431 ซึ่งเป็นดาวฤกษ์หลังวิวัฒนาการผ่านแขนงยักษ์เชิงเส้นกำกับ[11] คาดกันว่าโครงสร้างคล้ายแผ่นจานที่พบในดาวฤกษ์ระยะสุดท้ายนั้นมีความเกี่ยวข้องกับระบบดาวคู่ รวมถึงสำหรับกรณีของ IRAS 08544-4431 นี้ก็เช่นเดียวกัน
แม้ว่าจะตรวจพบโครงสร้างรอบดาวฤกษ์ที่ไม่มีความสมมาตรเป็นทรงกลมในดาวฤกษ์มวลมากที่วิวัฒนาการแล้วจำนวนมาก แต่ก็ไม่พบหลักฐานโดยตรงว่ามีแผ่นจานอยู่ หลักฐานทางอ้อมบ่งชี้ว่าดาวประเภทที่เป็นไปได้มากที่สุดที่จะมีจานรอบดาวคือดาว B[e][13] ซึ่งมีการหมุนรอบตัวเองอย่างรวดเร็วและอาจเป็นต้นกำเนิดแสงวาบรังสีแกมมา เป็นไปได้ที่จะก่อให้เกิดการสั่งสมมวลสารบนแถบเส้นศูนย์สูตรของดาว
ช่วงปลายชีวิตดาวฤกษ์
[แก้]มีการพบว่าดาวแคระขาวบางดวงมีการแผ่รังสีในช่วงอินฟราเรดมากเป็นพิเศษ ซึ่งเชื่อว่ามีสาเหตุมาจากแผ่นจานรอบดาวฤกษ์ที่ประกอบขึ้นจากฝุ่น[14] ฝุ่นที่ประกอบเป็นจานนั้นเชื่อว่าเป็นซากของวัตถุท้องฟ้าซึ่งครั้งหนึ่งเคยก่อตัวเป็นระบบดาวเคราะห์ เช่น ดาวเคราะห์น้อย[15]
นอกจากนี้ ดาวมวลอัดแน่นอย่าง ดาวแคระขาว ดาวนิวตรอน และ หลุมดำ โดยเฉพาะอย่างยิ่งในวัตถุท้องฟ้าซึ่งดาวปฐมภูมิของระบบดาวคู่แบบใกล้ชิดได้ถึงจุดสิ้นสุดและกลายเป็นดาวมวลอัดแน่นไปแล้ว ก๊าซจะหมุนรอบดาวมวลอัดแน่นไปในขณะที่ค่อย ๆ ตกลงสู่ในกลางเรื่อย ๆ ซึ่งอาจเกิดเป็นจานพอกพูนมวลขึ้น
ระบบดาวคู่
[แก้]เมื่อเกิดการรวบรวมก๊าซขึ้นในระบบดาวคู่ ก็อาจก่อตัวเป็นจานขึ้นมาในระบบดาวคู่นั้นได้ ระบบดาวคู่ที่สั่งสมก๊าซซึ่งมีโมเมนตัมเชิงมุมมักจะก่อตัวเป็นจานได้ง่าย[17] จานในระบบดาวคู่อาจแบ่งออกเป็น 3 ประเภท
- จานรอบดาวปฐมภูมิ (ดาวฤกษ์มวลมากกว่าใน 2 ดวง) สามารถก่อตัวขึ้นได้หากก๊าซที่สะสมมีโมเมนตัมเชิงมุมอยู่[17]
- จานรอบดาวทุติยภูมิ (ดาวฤกษ์มวลน้อยกว่า) โดยปกติจะไม่สามารถก่อตัวได้ เว้นแต่ก๊าซที่สั่งสมจะมีโมเมนตัมเชิงมุมสูงเพียงพอ ขนาดโมเมนตัมเชิงมุมที่จำเป็นนั้นจะพิจารณาจากอัตราส่วนมวลของดาวฤกษ์ปฐมภูมิต่อดาวฤกษ์ทุติยภูมิ
- จานรอบดาวคู่ (circumbinary disc) เป็นจานที่ก่อตัวขึ้นล้อมรอบทั้งดาวปฐมภูมิและดาวทุติยภูมิ โดยมีเส้นผ่านศูนย์กลางภายในใหญ่กว่าวงโคจรของดาวคู่ เชื่อกันว่าจานรอบดาวคู่มีมวลสูงสุดอยู่ที่ 0.5% ของมวลดวงอาทิตย์[18][17] ระบบดาวที่มีจานรอบดาวคู่อยู่ได้แก่ GG Tauri เป็นต้น[19]
จานมักมีลักษณะสมมาตรและก่อตัวในระนาบการโคจรของระบบดาวคู่ แต่อาจได้รับผลกระทบจากปรากฏการณ์ของบาร์ดีน–เพตเตอร์สัน[20] สนามแม่เหล็กขั้วคู่ที่ไม่สม่ำเสมอ[21] ความดันรังสี[22] และแรงน้ำขึ้นลง[18] ทำให้แผ่นจานอาจบิดตัวหรือเอียง ตัวอย่างของจานแบบเอียงสามารถพบได้ใน Her X-1, SS 433 เป็นต้น การแผ่รังสีเอกซ์จะลดลงและเพิ่มขึ้นเป็นคาบ 30 ถึง 300 วัน ซึ่งนานกว่าคาบการโคจรของดาวคู่มาก[23] สันนิษฐานว่าเกิดจากการหมุนควงของจานรอบดาวฤกษ์ปฐมภูมิหรือจานรอบดาวคู่ ซึ่งโดยปกติจะโคจรกลับทิศเมื่อเทียบกับวงโคจรของดาวคู่
วิวัฒนาการของจานรอบดาวฤกษ์
[แก้]วิวัฒนาการของจานรอบดาวฤกษ์อาจแบ่งออกเป็นหลายขั้นตอนตามการเปลี่ยนแปลงตามช่วงวิวัฒนาการของโครงสร้างและส่วนประกอบหลัก
วิธีการจำแนกแบบหนึ่งคือดูที่ขนาดของอนุภาค เช่น ฝุ่น ซึ่งเป็นส่วนประกอบหลักของจาน โดยเฉพาะอย่างยิ่ง มีระยะที่อนุภาคขนาด 1 μm ลงมาเป็นองค์ประกอบหลัก, ระยะที่อนุภาคเติบโตกลายเป็นอนุภาคขนาดใหญ่ขึ้น, ระยะที่มีความหนาแน่นมากขึ้นและก่อตัวเป็นดาวเคราะห์ก่อนเกิด และ ระยะที่เติบโตต่อไปอีกจนเกิดเป็นระบบดาวเคราะห์ขึ้น
อีกทางเลือกหนึ่ง จากปริมาณของก๊าซและแบบจำลองของการก่อตัวดาวทางทฤษฎี อาจจำแนกออกเป็น 3 ขั้นตอนดังนี้
- จานดาวเคราะห์ก่อนเกิด เป็นจานที่มีสสารดั้งเดิมจำนวนมาก เช่น ก๊าซและฝุ่น ซึ่งอาจก่อตัวเป็นดาวเคราะห์
- จานช่วงเปลี่ยนผ่าน คือจานที่ก๊าซและฝุ่นหมดลงและอยู่ในตำแหน่งระหว่างจานก่อกำเนิดดาวเคราะห์และจานเศษซาก ขนาดของอนุภาคฝุ่นจะใหญ่กว่าขนาดของจานดาวเคราะห์ก่อนเกิด และความหนาของเส้นรอบวงรอบนอกของจานก็ลดลงด้วย เมื่อวิวัฒนาการดำเนินไป จะมีรูปรากฏขึ้นตรงกลางของจาน
- จานเศษซาก เป็นจานที่ประกอบด้วยฝุ่นละเอียด และก๊าซที่เกิดจากการชนกันและการกลายเป็นไอ โดยอาจมีก๊าซอยู่เพียงเล็กน้อยหรือในบางกรณีอาจไม่มีเลย ก๊าซที่มีอยู่ก่อนและอนุภาคฝุ่นขนาดเล็กจะกระจายหายไปหรือถูกจับโดยดาวเคราะห์
ในระบบสุริยะ ฝุ่นระหว่างดาวเคราะห์ในระนาบวงโคจรของดาวเคราะห์ (สุริยวิถี) ที่เกิดจากการชนกันของดาวเคราะห์น้อยหรือการกลายเป็นไอของดาวหางสามารถเห็นเป็นแสงจักรราศีจากบนโลก
นอกจากนี้ ในระหว่างการวิวัฒนาการจากจานดาวเคราะห์ก่อนเกิดไปสู่จานเศษซาก สามารถสังเกตเห็นการลดลงของจำนวนอนุภาคฝุ่นขนาดเล็กระดับมิลลิเมตรในบริเวณรอบนอกของจานการเพิ่มขึ้นของปริมาณฝุ่นอุณหภูมิสูงในบริเวณวงในของจาน และการหายไปของก๊าซ[28]
กระบวนการกระจายหายไป
[แก้]หนึ่งในปรากฏการณ์สำคัญที่เกิดจากวิวัฒนาการของจานรอบดาวคือการกระจายหายไปของมวลสาร การวิจัยศึกษากระบวนการกระจายหายไปของมวลสารในแต่ละขั้นตอนวิวัฒนาการของจานรอบดาว ร่วมกับข้อมูลเกี่ยวกับมวลของดาวฤกษ์ใจกลางนั้น จะให้เบาะแสเกี่ยวกับมาตราส่วนเวลาวิวัฒนาการ ตัวอย่างเช่น จากผลการสังเกตการณ์กระบวนการกระจายหายไปของมวลสารในจานช่วงเปลี่ยนผ่าน (จานที่มีรูภายใน[29]) ได้ประมาณอายุเฉลี่ยของจานรอบดาวฤกษ์ไว้ประมาณ 10 ล้านปี[30]
ยังไม่มีทฤษฎีที่เป็นที่ยอมรับแน่ชัดเกี่ยวกับกลไกของกระบวนการกระจายหายไป รวมถึงช่วงระยะหรือมาตราส่วนเวลาที่กระบวนการกระจายหายไปเกิดขึ้น มีการเสนอสมมติฐานหลายข้อและลักษณะเชิงสังเกตการณ์ที่คาดการณ์ไว้ของจานเพื่ออธิบายกระบวนการกระจายหายไปของจานรอบดาวฤกษ์ สมมติฐานหลัก ๆ เช่น ฝุ่นจะทึบแสงน้อยลงเมื่อเติบโตเป็นอนุภาคขนาดใหญ่ขึ้นจึงสังเกตได้ยากขึ้น[31] หรืออาจเกิดจากการระเหยด้วยแสงเนื่องจากโฟตอนของรังสีเอกซ์และรังสีอัลตราไวโอเลตที่มาจากดาวที่ใจกลาง (หรือ ลมดาวฤกษ์)[32] หรืออาจเป็นเพราะได้รับอิทธิพลดาวเคราะห์ยักษ์ที่ก่อกำเนิดขึ้นภายในจาน[33]
ระยะเวลาของกระบวนการกระจายหายไปนั้นคาดว่าจะค่อนข้างสั้น มีวัตถุท้องฟ้าที่ดูเหมือนว่าจะเกิดการกระจายหายไปทั้งวงด้านในและวงรอบนอกของจานรอบดาวฤกษ์เกือบพร้อม ๆ กัน หรืออาจเริ่มกระจายหายไปจากส่วนด้านในแล้วไล่ไปยังด้านนอก โดยคาดว่าอาจใช้เวลาประมาณ 5 แสนปีตั้งแต่เริ่มเกิดการกระจายจนหายไปหมด[34]
วิวัฒนาการทางกลศาสตร์
[แก้]จานรอบดาวฤกษ์จะไม่อยู่ในสภาวะสมดุล โดยจะค่อย ๆ เสียสมดุลและเกิดการเปลี่ยนแปลงไป ความหนาแน่นต่อพื้นที่จาน คำนวณได้จาก
ในที่นี้ คือระยะห่างแนวรัศมีจากจุดศูนย์กลางของจาน ส่วน แสดงค่าความหนืด ที่ตำแหน่ง [35] สมการนี้ถือว่าแผ่นจานเป็นแบบมีแกนสมมาตร ไม่มีความแตกต่างในโครงสร้างตามแนวความหนาของแผ่นจาน
ความหนืดของจาน ซึ่งอาจเกิดขึ้นจากตัวโมเลกุล หรือความปั่นป่วน จะทำให้เกิดการสูญเสียโมเมนตัมเชิงมุมไปยังด้านนอกของจาน แล้วในที่สุดจะทำให้มวลจำนวนมากไปพอกพูนเข้าที่ส่วนดาวฤกษ์ใจกลาง[35] อัตราการเพิ่มมวลสู่ดาวฤกษ์ใจกลาง ขึ้นอยู่กับค่าความหนืด โดยคำนวณได้ดังนี้
ในที่นี้ คือเส้นผ่านศูนย์กลางด้านในของแผ่นจาน
อ่านเพิ่ม
[แก้]อ้างอิง
[แก้]- ↑ "Circumstellar Disks HD 141943 and HD 191089". ESA/Hubble images. สืบค้นเมื่อ 29 เมษายน 2014.
- ↑ Hartmann, Lee; และคณะ. "Accretion and the Evolution of T Tauri Disks". Astrophysical Journal. 495 (1): 385–400. Bibcode:1998ApJ...495..385H. doi:10.1086/305277.
- ↑ Benisty, M.; และคณะ. "A low optical depth region in the inner disk of the Herbig Ae star HR 5999". Astronomy and Astrophysics. 531: A84. Bibcode:2011A&A...531A..84B. doi:10.1051/0004-6361/201016091.
- ↑ de Wit, W. J.; และคณะ. "Mid-infrared interferometry towards the massive young stellar object CRL 2136: inside the dust rim". Astronomy and Astrophysics. 526: L5. Bibcode:2011A&A...526L...5D. doi:10.1051/0004-6361/201016062.
- ↑ "ALMA Reveals Planetary Construction Sites". ESO. สืบค้นเมื่อ 21 ธันวาคม 2015.
- ↑ 岡村定矩・家 正則・犬塚修一郎・小山勝二・千葉柾司・富阪幸治, บ.ก. (2012-07-20). 天文学辞典. シリーズ現代の天文学. Vol. 別. 日本評論社. p. 214. ISBN 978-4-535-60738-5.
- ↑ "Exoplanet Caught on the Move". ESO. 10 มิถุนายน 2010. สืบค้นเมื่อ 9 กันยายน 2017.
- ↑ Kalas, P.; และคณะ (13 พฤศจิกายน 2008). "Hubble Directly Observes Planet Orbiting Fomalhaut". Space Telescope Science Institute (STScI). สืบค้นเมื่อ 10 ตุลาคม 2024.
- ↑ Porter, John M.; Rivinius, Thomas. "Classical Be Stars". Publications of the Astronomical Society of the Pacific. 115 (812): 1153–1170. Bibcode:2003PASP..115.1153P. doi:10.1086/378307.
- ↑ "Into the Chrysalis". ESO. 27 กันยายน 2007. สืบค้นเมื่อ 12 กันยายน 2017.
- ↑ Deroo, P.; และคณะ. "AMBER and MIDI interferometric observations of the post-AGB binary IRAS 08544-4431: the circumbinary disc resolved". Astronomy and Astrophysics. 474 (3): L45–L48. Bibcode:2007A&A...474L..45D. doi:10.1051/0004-6361:20078079.
- ↑ "Sharp Vision Reveals Intimacy of Stars". ESO. 24 พฤศจิกายน 2005. สืบค้นเมื่อ 15 กันยายน 2017.
- ↑ Domiciano de Souza, A.; และคณะ. "AMBER/VLTI and MIDI/VLTI spectro-interferometric observations of the B[e] supergiant CPD-57°2874. Size and geometry of the circumstellar envelope in the near- and mid-IR". Astronomy and Astrophysics. 464 (1): 81–86. Bibcode:2007A&A...464...81D. doi:10.1051/0004-6361:20054134.
- ↑ Becklin, E. E.; และคณะ. "A Dusty Disk around GD 362, a White Dwarf with a Uniquely High Photospheric Metal Abundance". Astrophysical Journal. 632 (2): L119–L122. Bibcode:2005ApJ...632L.119B. doi:10.1086/497826.
- ↑ Farihi, J.; Jura, M.; Zuckerman, B. "Infrared Signatures of Disrupted Minor Planets at White Dwarfs". Astrophysical Journal. 694 (2): 805–819. Bibcode:2009ApJ...694..805F. doi:10.1088/0004-637X/694/2/805.
- ↑ "Planet-forming Lifeline Discovered in a Binary Star System". ESO. 29 ตุลาคม 2014. สืบค้นเมื่อ 12 กันยายน 2017.
- ↑ 17.0 17.1 17.2 Bate, Matthew R.; Bonnell, Ian A. "Accretion during binary star formation - II. Gaseous accretion and disc formation". Monthly Notices of the Royal Astronomical Society. 285 (1): 33–48. Bibcode:1997MNRAS.285...33B. doi:10.1093/mnras/285.1.33.
- ↑ 18.0 18.1 Larwood, John D.; Papaloizou, John C. B. "The hydrodynamical response of a tilted circumbinary disc: linear theory and non-linear numerical simulations". Monthly Notices of the Royal Astronomical Society. 285 (2): 288–302. arXiv:astro-ph/9609145. Bibcode:1997MNRAS.285..288L. doi:10.1093/mnras/285.2.288.
- ↑ Roddier, C.; และคณะ. "Adaptive Optics Imaging of GG Tauri: Optical Detection of the Circumbinary Ring". Astrophysical Journal. 463: 326–335. Bibcode:1996ApJ...463..326R. doi:10.1086/177245.
- ↑ Bardeen, James M.; Petterson, Jacobus A. (1975-01-15). "The Lense-Thirring effect and accretion discs around Kerr black holes". Astrophysical Journal Letters. 195: L65–L67. Bibcode:1975ApJ...195L..65B. doi:10.1086/181711.
- ↑ Terquem, C.; Papaloizou, J. C. B. "The response of an accretion disc to an inclined dipole with application to AA Tau". Astronomy and Astrophysics. 360: 1031–1042. arXiv:astro-ph/0006113. Bibcode:2000A&A...360.1031T.
- ↑ Pringle, J. E. "Self-induced warping of accretion discs". Monthly Notices of the Royal Astronomical Society. 281 (1): 357–361. Bibcode:1996MNRAS.281..357P. doi:10.1093/mnras/281.1.357.
- ↑ Maloney, Philip R.; Begelman, Mitchell C. "The Origin of Warped, Precessing Accretions Disks in X-Ray Binaries". Astrophysical Journal Letters. 491 (1): L43–L46. arXiv:astro-ph/9710060. Bibcode:1997ApJ...491L..43M. doi:10.1086/311058.
- ↑ "The Birth of a Giant Planet?". ESO. 28 กุมภาพันธ์ 2013. สืบค้นเมื่อ 15 กันยายน 2017.
- ↑ "Boulevard of broken rings". ESO. 20 มิถุนายน 2016. สืบค้นเมื่อ 15 กันยายน 2017.
- ↑ "First Light for SPHERE Exoplanet Imager". ESO. 4 มิถุนายน 2014. สืบค้นเมื่อ 15 กันยายน 2017.
- ↑ "Planets in the making". ESO. สืบค้นเมื่อ 26 ธันวาคม 2016.
- ↑ Wyatt, M. C.; และคณะ. "Five steps in the evolution from protoplanetary to debris disk". Astrophysics and Space Science. 357 (2): 103. Bibcode:2015Ap&SS.357..103W. doi:10.1007/s10509-015-2315-6.
- ↑ Mamajek, Eric E. "Initial Conditions of Planet Formation: Lifetimes of Primordial Disks". AIP Conference Proceedings. 1158: 3–10. arXiv:0906.5011. Bibcode:2009AIPC.1158....3M. doi:10.1063/1.3215910.
- ↑ Cieza, Lucas; และคณะ. "The Spitzer c2d Survey of Weak-Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building". Astrophysical Journal. 667 (1): 308–328. arXiv:0706.0563. Bibcode:2007ApJ...667..308C. doi:10.1086/520698.
- ↑ Nelson, Andrew F.; Benz, Willy; Ruzmaikina, Tamara V. "Dynamics of Circumstellar Disks. II. Heating and Cooling". Astrophysical Journal. 529 (1): 357–390. Bibcode:2000ApJ...529..357N. doi:10.1086/308238.
- ↑ Clarke, C.; Gendrin, A.; Sotomayor, M. "The dispersal of circumstellar discs: the role of the ultraviolet switch". Monthly Notices of the Royal Astronomical Society. 328: 485–491. Bibcode:2001MNRAS.328..485C. doi:10.1046/j.1365-8711.2001.04891.x.
- ↑ Bryden, G.; และคณะ. "Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth". Astrophysical Journal. 514 (1): 344–367. Bibcode:1999ApJ...514..344B. doi:10.1086/306917.
- ↑ Williams, Jonathan P.; Cieza, Lucas A. "Protoplanetary Disks and Their Evolution". Annual Review of Astronomy and Astrophysics. 49 (1): 67–117. Bibcode:2011ARA&A..49...67W. doi:10.1146/annurev-astro-081710-102548.
- ↑ 35.0 35.1 Armitage, Philip J. "Dynamics of Protoplanetary Disks". Annual Review of Astronomy and Astrophysics. 49 (1): 195–236. arXiv:1011.1496. Bibcode:2011ARA&A..49..195A. doi:10.1146/annurev-astro-081710-102521.
บรรณานุกรม
[แก้]- McCabe, Caer (30 พฤษภาคม 2007). "Catalog of Resolved Circumstellar Disks". NASA JPL. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 12 มิถุนายน 2016. สืบค้นเมื่อ 17 กรกฎาคม 2007.
- Paul Kalas. "Image Gallery of Dust disks". Circumstellar Disk Learning Site. Department of Astronomy, University of California at Berkeley.
แหล่งข้อมูลอื่น
[แก้]- วิกิมีเดียคอมมอนส์มีสื่อเกี่ยวกับ จานรอบดาวฤกษ์