ข้ามไปเนื้อหา

ระดับขั้น

จากวิกิพีเดีย สารานุกรมเสรี

ในคณิตศาสตร์สาขาทฤษฎีกราฟ ระดับขั้น (degree) ของ จุดยอด v ใน กราฟ เป็นจำนวนของ เส้นเชื่อม ซึ่งต่อกับจุดยอด v (สำหรับเส้นเชื่อมที่เป็นห่วง ให้นับ 2 ครั้ง) [1] ดีกรีของจุดยอด เขียนแทนในทางคณิตศาสตร์ว่า ดีกรีสูงสุดของกราฟ G เขียนแทนด้วย Δ(G) และดีกรีต่ำสุดของกราฟเขียนแทนด้วย δ(G)

กราฟไม่ระบุทิศทาง

[แก้]
กราฟที่มีจุดยอด 6 จุด และเส้นเชื่อม 7 เส้น

ระดับขั้นของจุดยอดในกราฟไม่ระบุทิศทาง คือ จำนวนเส้นเชื่อมที่ต่อกับจุดยอดนั้น ซึ่งถ้าเป็นเส้นเชื่อมที่เป็นวงวน (loop) จะต้องนับซ้ำสองครั้ง เพราะว่าเส้นเชื่อมมีจุดยอดปลาย 2 จุด ซึ่งจุดยอดปลายแต่ละจุดจะเพิ่มระดับขั้นให้กับจุดยอด

กราฟในรูปทางขวามีระดับขั้นดังนี้

จุดยอด ระดับขั้น
1 2
2 3
3 2
4 3
5 3
6 1

กราฟระบุทิศทาง

[แก้]
กราฟระบุทิศทางที่มีจุดยอด 4 จุด และเส้นเชื่อม 5 เส้น

เส้นเชื่อมในกราฟระบุทิศทาง จะประกอบด้วยจุดยอดปลาย 2 ประเภทคือ หัว (จุดยอดปลายที่มีลูกศร) และ หาง ระดับขั้นเข้า คือ ผลบวกของจำนวนหัวที่ชี้เข้ามา และ ระดับขั้นออก คือ ผลบวกของจำนวนหางที่ชี้เข้ามา

ระดับขั้นเข้าเขียนแทนด้วย และระดับขั้นออกเขียนแทนด้วย

กราฟในรูปทางขวามีระดับขั้นดังนี้

จุดยอด ระดับขั้นเข้า ระดับขั้นออก
1 0 2
2 2 0
3 2 2
4 1 1

กรณีพิเศษ

[แก้]
กราฟไม่ระบุทิศทาง มีจุดยอด 4, 5, 6, 7, 10, 11, 12 เป็นใบ
จุดเอกเทศ
จุดยอดที่ เรียกว่า จุดเอกเทศ
ใบ
จุดยอดที่ เรียกว่า ใบ (leaf)
กราฟปรกติ
ถ้าจุดยอดทุกจุดในกราฟมีระดับขั้นเท่ากับ k กราฟนี้จะเรียกว่า กราฟปรกติ-k และกราฟนี้จะมีระดับขั้นเท่ากับ k
แหล่งต้นทาง
จุดยอดที่ เรียกว่า แหล่งต้นทาง (source)
แหล่งปลายทาง
จุดยอดที่ เรียกว่า แหล่งปลายทาง (sink)

ทฤษฎีการจับมือ

[แก้]

ทฤษฎีบทกล่าวไว้ว่า กำหนดกราฟ

จากทฤษฎีบทนี้ทำให้กล่าวได้ว่า สำหรับกราฟใดๆ จำนวนของจุดยอดที่มีดีกรีคี่จะมีเป็นจำนวนคู่เสมอ ทฤษฎีบทนี้รู้จักในอีกชื่อว่า ทฤษฎีการจับมือ. ชื่อนี้มาจากปัญหาทางคณิตศาสตร์ที่ว่าให้พิสูจน์ว่าในกลุ่มของผู้คนนั้น ผู้ที่จับมือกับคนอื่นเป็นจำนวนคี่ครั้งจะมีอยู่เป็นจำนวนคู่คนเสมอ

อ้างอิง

[แก้]
  1. Diestel p.5