ข้ามไปเนื้อหา

คณิตศาสตร์เชิงการจัด

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก คอมบินาทอริกส์)

คณิตศาสตร์เชิงการจัด (อังกฤษ: combinatorics) คือสาขาหนึ่งของคณิตศาสตร์ ที่ศึกษากลุ่มของวัตถุจำนวนจำกัดที่มีคุณสมบัติสอดคล้องกับเงื่อนไขบางประการ และมักสนใจเป็นพิเศษที่จะ "นับ" จำนวนวัตถุในกลุ่มนั้น ๆ (ปัญหาการแจกแจง) หรืออาจหาคำตอบว่า วัตถุที่มีคุณสมบัติที่ต้องการนั้นมีอยู่หรือไม่ (ปัญหาสุดขอบ) การศึกษาเกี่ยวกับการนับวัตถุ บางครั้งถูกจัดให้อยู่ในสาขาความน่าจะเป็นแทน

การเรียงสับเปลี่ยน และ การจัดหมู่

การจัดหมู่

[แก้]

การจัดหมู่ คือ การเลือกวัตถุจากกลุ่ม โดยไม่สนใจลำดับของการเลือก เช่น ในการเล่นไพ่โป๊กเกอร์ ผู้เล่นแต่ละคนจะได้รับไพ่ 5 ใบจากทั้งหมด 52 ใบ ซึ่งลำดับในการได้รับแต่ละใบมานั้นจะไม่มีผลในการเล่น

ในคณิตศาสตร์เชิงการจัดนั้น การจัดหมู่ คือ สับเซต ในเซตใดๆ นั้น ตำแหน่งไม่มีความสำคัญ เนื่องจากในแต่ละเซต สิ่งที่เราสนใจคือ สิ่งของ ที่อยู่ในเซต หรือสมาชิกของเซต แต่ไม่สนใจลำดับ เช่น

{2, 4, 6} = {6, 4, 2}

และ {1,1,1} มีความหมายเท่ากับ {1} เนื่องจาก เซตนั้นกำหนดความแตกต่างด้วยสมาชิกที่แตกต่างกันในเซต

ดูเพิ่มที่บทความ การจัดหมู่

การเรียงสับเปลี่ยน

[แก้]

การเรียงสับเปลี่ยน คือ เป็นการเลือกวัตถุโดยสนใจลำดับของการเลือก เช่น การเลือกรหัสเอทีเอ็ม ซึ่งรหัส 5-3-7-5 นั้นถือว่าแตกต่างจากรหัส 3-7-5-5

สมมุติเราสนใจเลข 3 ตัว คือ

1, 2, 3

เราสามารถเรียงสับเปลี่ยนทั้งหมดได้รูปแบบดังต่อไปนี้

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

ดูเพิ่มที่บทความ การเรียงสับเปลี่ยน

การเลือกซ้ำ

[แก้]

ทั้งการเรียงสับเปลี่ยน และ การจัดหมู่ นั้น ในการเลือกวัตถุออกจากกลุ่มของวัตถุทั้งหมด เราอาจสามารถเลือกซ้ำได้ เช่น ในการเลือกรหัสเอทีเอ็มเลข 4 หลัก โดยแต่ละหลักนั้นเลือกจากเลข 0 ถึง 9 และเราสามารถเลือกเลขตัวเดิมซ้ำได้อีก

สรุปสูตรที่สำคัญ

[แก้]
การเรียงสับเปลี่ยน แบบเลือกซ้ำได้
เลือกวัตถุ ชิ้น จากทั้งหมด ชิ้นที่แตกต่างกัน โดยสนใจลำดับในการเลือก และ สามารถเลือกซ้ำได้
จะมีวิธีการเลือกทั้งหมด
การเรียงสับเปลี่ยน แบบไม่มีการเลือกซ้ำ
เลือกวัตถุ ชิ้น จากทั้งหมด ชิ้นที่แตกต่างกัน โดยสนใจลำดับในการเลือก และแต่ละชิ้นนั้นสามารถถูกเลือกได้เพียงครั้งเดียว จะมีวิธีการเลือกทั้งหมด
การจัดหมู่ แบบเลือกซ้ำได้
เลือกวัตถุ ชิ้น จากทั้งหมด ชิ้นที่แตกต่างกัน โดยไม่สนใจลำดับในการเลือก และ สามารถเลือกซ้ำได้
จะมีวิธีการเลือกทั้งหมด
การจัดหมู่ แบบไม่มีการเลือกซ้ำ
เลือกวัตถุ ชิ้น จากทั้งหมด ชิ้นที่แตกต่างกัน โดยไม่สนใจลำดับในการเลือก และแต่ละชิ้นนั้นสามารถถูกเลือกได้เพียงครั้งเดียว จะมีวิธีการเลือกทั้งหมด

ดูเพิ่ม

[แก้]