ในทางคณิตศาสตร์ อนุกรมเรขาคณิต เป็นอนุกรมที่พจน์ต่าง ๆ ถูกสร้างขึ้นโดยการคูณพจน์ก่อนหน้าด้วยค่าคงตัวค่าหนึ่ง นั่นคือมาจากลำดับเรขาคณิต ตัวอย่างเช่น

และโดยทั่วไป อนุกรมเรขาคณิต

จะเป็นอนุกรมลู่เข้าก็ต่อเมื่อ
ผลรวมย่อยของ n พจน์แรกคือ

คูณทั้งสองข้างของสมการด้วย
ได้

ซึ่งพจน์อื่น ๆ จะตัดกันหายไปหมด จัดรูปแบบใหม่ จะได้สูตรสำหรับคำนวณผลรวม โดยที่ r ≠ 1

ดังนั้นกรณีทั่วไปของสูตรนี้คือ

สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ คูณทั้งสองข้างด้วย

จะได้สูตร

ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่

จะได้สูตร

สามารถคำนวณได้จากสูตรของผลรวมจำกัด

ซึ่ง
จะมีค่าเข้าใกล้ 0 เมื่อ k มีค่าเข้าใกล้อนันต์ก็ต่อเมื่อ
ดังนั้น

สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ จะได้สูตร

ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่ จะได้สูตร

โดยที่สูตรทั้งหมดด้านบนจะใช้ได้เมื่อ
เท่านั้น นอกเหนือจากนี้จะเป็นอนุกรมลู่ออก
สูตรผลรวมของอนุกรมเรขาคณิตใช้เขียนทศนิยมซ้ำเป็นเศษส่วนได้ โดยตัวอย่างเช่น 0.121212... เขียนได้เป็นอนุกรมเรขาคณิตที่มี a = 12/100 และ r = 1/100 ดังนี้
ในทำนองเดียวกันสามารถพิสูจน์ได้ว่า ทศนิยมซ้ำที่มีช่วงซ้ำยาว n หลัก จะสามารถเขียนในรูปของเศษส่วนที่มีเศษเป็นชุดตัวเลขที่ซ้ำ และส่วนเป็น 10n - 1
จากสูตร
เมื่อ 
สามารถนำไปพิสูจน์อนุกรมอื่น ๆ ได้โดยแคลคูลัส เช่น เมื่อนำสูตรนี้ไปหาอนุพันธ์ซ้ำ ๆ จะได้
เมื่อ 
เมื่อ 
เมื่อ 
เป็นเช่นนี้เรื่อยไป