วิธีเอนโทรปีไขว้
วิธีเอนโทรปีไขว้ (อังกฤษ: Cross-Entropy Method) เป็นขั้นตอนวิธีที่ใช้หลักการของ Monte Carlo เพื่อที่จะแก้ปัญหา ถูกนำเสนอโดย R.Y. Rubinstein[1][2] ซึ่งประเภทของปัญหาที่สามารถใช้วิธีเอนโทรปีไขว้ได้นั้นจะมีอยู่สองลักษณะ คือ การประมาณค่า หรือ การหาค่าที่ดีที่สุด โดยวิธีการนี้ถูกประยุกต์ใช้ในปัญหาเชิงวิศวกรรม และวิทยาศาสตร์มากมาย
ภาพรวมของวิธีเอนโทรปีไขว้
[แก้]วิธีเอนโทรปีไขว้นั้นถูกพัฒนาขึ้นโดย Reuven Y. Rubinstein ซึ่งเป็นนักวิทยาศาสตร์ชาวอิสราเอลที่ให้ความสนใจทางด้านการพัฒนาขั้นตอนวิธีเชิงสถิติมากมาย เขียนหนังสือหกเล่มและตีพิมพ์ผลงานกว่าร้อยผลงาน[3] ซึ่งแน่นอนว่าวิธีการเอนโทรปีไขว้เป็นหนึ่งในขั้นตอนวิธีเชิงสถิติเหล่านั้นเช่นกัน โดยเป็นขั้นตอนวิธีที่มีประสิทธิภาพตัวหนึ่งที่ใช้สำหรับปัญหาการประมาณค่าความน่าจะเป็นของเหตุการณ์ที่พบเจอได้ยาก (rare-event probability) ปัญหาการหาค่าที่เหมาะสมที่สุดเชิงการจัด (combinatorial optimization) วิธีการเอนโทรปีไขว้นั้นได้ชื่อมาจาก "ระยะห่างเอนโทรปีไขว้" ซึ่งเป็นการหาระยะห่างระหว่าง "ข้อมูล" ที่ใช้กันแพร่หลายในทางวิทยาศาสตร์และวิศวกรรมกว่าศตวรรษ
วิธีการเอนโทรปีไขว้นั้นถูกนำไปใช้ในปัญหาการหาค่าที่เหมาะสมที่สุดเชิงการจัดมากมาย เช่น ปัญหาการตัดที่มากที่สุด (Maximum Cut Problem) ปัญหาการหาเส้นทางเดินของพนักงานขาย (Traveling Salesman Problem) ปัญหาการหากราฟย่อยบริบูรณ์ที่มีขนาดใหญ่ที่สุดในกราฟ (Clique Problem) และปัญหาต่างๆอีกมากมาย และจุดเด่นพิเศษอีกอย่างหนึ่งสำหรับวิธีการเอนโทรปีไขว้คือ สามารถหาค่าที่เหมาะสมที่สุดสำหรับปัญหาที่มีค่ารบกวน (noisy problem) ได้ เพราะลักษณะขั้นตอนวิธีแก้ปัญหาที่เป็นเชิงสถิตินั่นเอง
วิธีการเอนโทรปีไขว้นั้นสามารถแตกขั้นตอนที่สำคัญออกได้เป็นสองส่วน คือ
- ขั้นสุ่มตัวอย่าง (Generate) จะสร้างตัวอย่างจากความหนาแน่นของความน่าจะเป็นที่ได้มาจากการคำนวณในขั้นตอนวิธี
- ขั้นปรับปรุง (Update) ปรับพารามิเตอร์บางอย่าง เพื่อให้การสุ่มครั้งต่อไป ได้ตัวอย่างที่ดีขึ้นไปอีก
ประเด็นสำคัญสำหรับวิธีการเอนโทรปีไขว้ คือ จะนิยามขั้นตอนในเชิงคณิตศาสตร์อย่างไรให้สามารถปรับปรุงค่าพารามิเตอร์เพื่อให้เข้าใกล้ค่าที่เหมาะสมได้อย่างรวดเร็ว
ในด้านของการประมาณค่าความน่าจะเป็นของเหตุการณ์ที่พบเจอได้ยากนั้น วิธีการเอนโทรปีไขว้จะใช้ร่วมกับกลวิธีการสุ่มตัวอย่างสำคัญ (Importance Sampling Technique) วิธีการเอนโทรปีไขว้จะปรับค่าของพารามิเตอร์ซ้ำๆ หลายๆรอบเพื่อให้เข้าใกล้ค่าที่เหมาะสมที่สุด ปัญหาที่ประยุกต์วิธีนี้ตัวอย่างเช่นปัญหาการวัดประสิทธิภาพในระบบเครือข่ายทางคมนาคม หรือ ระบบที่ต้องการความน่าเชื่อถือ
การใช้วิธี เอนโทรปีไขว้ ในปัญหาการประมาณค่า
[แก้]แนวคิด
[แก้]ในกรณีที่เราพยายามที่จะใช้วิธีเอนโทรปีไขว้เพื่อประมาณค่านั้น สามารถแปลงปัญหาเป็นสมการคณิตศาสตร์ของการประมาณหาค่าคาดหวังง่ายๆได้ดังสมการที่ (1)
- (1)
เมื่อ H คือฟังก์ชันที่เราต้องการประมาณค่า เรียกได้อีกอย่างหนึ่งว่า ฟังก์ชันของประสิทธิภาพของตัวอย่างสุ่ม
และ f คือฟังก์ชันของความหนาแน่นของความน่าจะเป็นของตัวแปรสุ่ม X
ซึ่งสำหรับวิธีการประมาณค่า ในสมการที่ 1 นั้น ในกรณีที่สามารถสุ่มตัวอย่างสุ่มด้วยความหนาแน่นของความน่าจะเป็น ได้ยาก จะทำการสร้างฟังก์ชัน เพื่อที่จะสามารถประมาณค่าได้ง่ายขึ้นตามสมการที่ 2
- (2)
- (2)
โดยที่กำหนดให้
- เมื่อ
เนื่องจาก g เป็นความหนาแน่นของความน่าจะเป็นที่เราเป็นคนสร้างขึ้น ทำให้การสุ่มตัวอย่างเป็นไปได้ง่ายกว่า f ดังนั้น เราจึงสามารถสุ่มตัวอย่างสุ่ม ตามความหนาแน่นของความน่าจะเป็นของ g(x) ได้ง่ายกว่า ทำให้ประมาณค่าของ l ด้วยตัวประมาณค่าที่ไม่ลำเอียงได้ง่ายขึ้นตามสมการที่ (3)
- (3)
จากปัญหาการประมาณค่า ก็จะเหลือแค่ปัญหาว่าจะสร้างความหนาแน่นของความน่าจะเป็น g ที่ดีที่สุดได้อย่างไรซึ่งค่า g ที่ดีที่สุดในอุดมคตินั้นนิยามด้วย
แต่สิ่งที่เกิดขึ้นก็คือ เราสามารถหาค่า g*(x) ได้ยาก สำหรับวิธีเอนโทรปีไขว้นี้แทนที่จะมุ่งไปที่การหาค่าของ g*(x) จะพยายามหาค่าของ g ที่ทำให้ความแตกต่างระหว่าง g และ g* น้อยที่สุด ซึ่งความแตกต่างนั้นเองที่เรียกว่าเอนโทรปีไขว้ตามที่เกริ่นไว้ในช่วงต้น ซึ่งเอนโทรปีไขว้ของความหนาแน่นของความน่าจะเป็นของสองฟังก์ชันนั้น นิยามได้ดังสมการที่ (4)
- (4)
- (4)
- หลังจากที่ได้รู้หลักการคร่าวๆของวิธีการเอนโทรปีไขว้เพื่อการประมาณค่าในทางทฤษฎีไปแล้วว่าเป็นไปในลักษณะอย่างไร หากพิจารณาในทางปฏิบัติแล้วนั้นฟังก์ชัน f นอกจากจะแปรไปตามตัวแปรต้น x แล้ว ยังถูกควบคุมโดยพารามิเตอร์ u บางอย่าง ซึ่งสามารถเขียนฟังก์ชัน f ได้เป็น f(x; u) ซึ่งคงเดาได้ไม่ยากว่าบางกรณีนั้น พารามิเตอร์ u นี้หาได้ยากมาก เราจึงพยายามหาค่าของ g ที่ทำให้มี v ที่ทำให้ g(x) = f(x; v) และ v ทำให้ความแตกต่างของ f(x; v) และ f(x; u) น้อยๆ ซึ่งความแตกต่างนี้วัดโดยเอนโทรปีไขว้ตามสมการที่ 4 นั่นเอง ก็จะทำให้ปัญหาเล็กลงอีกขั้นหนึ่งคือเป็นปัญหาที่จะพยายามหาค่าของ v ที่ดีที่สุดเท่านั้น ซึ่งนิยาม v ในอุดมคติว่า v* ลองไปแทนค่าของ f(x; v) และ f(x; u) ลงในสมการที่ (4) แล้วจัดรูปสักเล็กน้อยก็จะรู้ว่า v ที่ดีที่สุดจะทำให้ มีค่ามากที่สุดนั่นเอง ซึ่งการแก้ปัญหานี้ก็สามารถหาได้ตามสมการที่ (5)
- (5)
ซึ่งจากสมการที่ (5) R. Y. Rubinstein ได้นำเสนอวิธีสำหรับแก้ปัญหานี้ไว้แล้ว[4]
ในปัญหาเฉพาะที่ชื่อว่าปัญหาการหาความน่าจะเป็นของเหตุการณ์ที่พบเจอได้ยาก(rare event probability) ซึ่งเป็นปัญหาที่ประยุกต์ด้วยวิธีเอนโทรปีไขว้กันอย่างแพร่หลาย โดยเป็นกรณีเฉพาะที่ฟังก์ชัน H เป็นฟังก์ชันตัวชี้ของฟังก์ชัน วัดที่ระดับ ตามสมการ ซึ่งในการประมาณค่าของ ด้วยวิธีเดิมเพื่อหาความน่าจะเป็นที่ นั้นจะยากโดยดูได้จากสมการที่ (5) คือค่าของ ส่วนมากจะมีค่าเป็น 0 ไปมากพอสมควรจะไม่สามารถประมาณหาค่าที่แม่นยำได้ วิธีการแก้ไขคือต้องทำวิธีการ เอนโทรปีไขว้หลายๆรอบ หลายๆชั้น โดยจะปรับค่าพารามิเตอร์ v และระดับปัจจุบันให้เข้าใกล้ v* และ ไปเรื่อยๆจนถึงเงื่อนไขยุติที่พอใจ สามารถเขียนขั้นตอนวิธีตามที่ได้อธิบายมาเป็นรหัสเทียมได้ดังนี้
รหัสเทียมสำหรับวิธีเอนโทรปีไขว้เพื่อประมาณความน่าจะเป็นสำหรับเหตุการณ์ที่พบเจอได้ยาก
[แก้]1 และ 2 3 t = 0 /*ตัวนับจำนวนรอบ*/ 4 5 ทำ 6 t = t + 1 7 สุ่มตัวอย่างสุ่ม ตามความหนาแน่นของความน่าจะเป็น 8 สำหรับทุก i ตั้งแต่ 1 ถึง N 9 10 เรียงลำดับจากน้อยไปหามาก(S) 11 12 = ค่าต่ำสุด(,) 13 คำนวณ จากสมการ (5) ด้วย และ 14 ระหว่างที่ 15 16 สุ่มตัวอย่างสุ่ม ตามความหนาแน่นของความน่าจะเป็น 17 คำนวณ จากสมการ (3) ด้วย 18 คืนค่า
จะเห็นว่าหากต้องการใช้ขั้นตอนวิธีนี้ต้องทำการปรับค่า ให้เหมาะสมกับความต้องการ ซึ่งโดยปกติ จะมีค่าอยู่ระหว่าง 0.01 และ 0.1 และค่าของ จะน้อยว่า มากๆ เช่น ในขณะที่ และขั้นตอนวิธีนี้จะรับประกันว่าสามารถทำงานจนจบได้แน่นอนหากค่าของ มีค่าเล็กมากพอ
การใช้วิธี เอนโทรปีไขว้ ในปัญหาการหาค่าที่เหมาะสมที่สุด
[แก้]แนวคิด
[แก้]ให้ เป็นเซตของสถานะ และ S เป็นฟังก์ชันจริงซึ่ง S(x) จะให้ค่าความเหมาะสมของ x โดยที่ x เป็นสมาชิกของ โดยค่า x ที่เหมาะสมที่สุดคือ x* ซึ่งจะทำให้ค่าของ S(x*) มีค่าสูงที่สุด สามารถเขียนเป็นปัญหาในรูปของสมการทางคณิตศาสตร์ได้ดังสมการที่ (6)
- (6)
หาพิจารณาปัญหานี้เทียบกับปัญหาการประมาณค่าของ เมื่อ X เป็นตัวแปรสุ่มที่มีความหนาแน่นของความน่าจะเป็น และให้ เป็นค่าระดับชั้น จะสังเกตว่าถ้าค่า มีค่าใกล้เคียงกับ (ค่าสูงสุดของ S) แล้ว จะทำให้ค่าของ เป็นความน่าจะเป็นของเหตุการณ๊ที่พบเจอได้ยาก ซึ่งปัญหานี้เราจะต้องการสร้างตัวอย่างสุ่มจำนวนหนึ่งที่มีค่าใกล้เคียงกับ x* โดยเป็นเรื่องที่ดีที่วิธีเอนโทรปีไขว้ สามารถทำเรื่องนี้ได้
หากเปรียบเทียบความแตกต่างของปัญหาระหว่างการหาค่าที่เหมาะสมที่สุด กับ การประมาณค่า ความแตกต่างก็คือการหาค่าที่เหมาะสมที่สุด เราจะไม่รู้ค่าของระดับชั้น ล่วงหน้าเหมือนในการประมาณค่า แต่อย่างไรก็ตามขั้นตอนวิธีในการแก้ปัญหาก็ไ่ม่ค่อยแตกต่างกันมากคือเราจะสร้างลำดับของ และ ไปเรื่อยๆ โดยจะพยายามให้ทั้งสองค่าเข้าใกล้ และ ตามลำดับ ซึ่งค่าของ จะสอดคล้องกับค่าของ ที่ต้องการหาเช่นกัน
รหัสเทียมสำหรับวิธีเอนโทรปีไขว้เพื่อใช้ในปัญหาการหาค่าที่เหมาะสมที่สุด
[แก้]1 และ 2 3 t = 0 /*ตัวนับจำนวนรอบ*/ 4 5 ทำ 6 t = t + 1 7 สุ่มตัวอย่างสุ่ม ตามความหนาแน่นของความน่าจะเป็น 8 สำหรับทุก i ตั้งแต่ 1 ถึง N 9 10 เรียงลำดับจากน้อยไปหามาก(S) 11 12 = ค่าต่ำสุด(,) 13 คำนวณ ที่ทำให้ สูงที่สุด 14 ระหว่างที่ ยังไม่ถึงเงื่อนไขยุติ 15 16 คืนค่า
จะเห็นว่าหากต้องการใช้ขั้นตอนวิธีนี้ต้องทำการปรับค่า และเงื่อนไขยุติให้เหมาะสม
ตัวอย่างปัญหาที่สามารถประยุกต์ใช้วิธีการเอนโทรปีไขว้ได้
[แก้]ปัญหาการหาเส้นทางเดินของพนักงานขาย (Traveling Salesman Problem)
[แก้]นิยามปัญหา
[แก้]- ปัญหาการเดินของพนักงานขายคือปัญหาที่มีผู้ที่ให้ความสนใจพอสมควรในวงการคอมพิวเตอร์ ปัญหาจะกำหนดด้วยกราฟเชื่อมโยงประกอบด้วยปม n ชื่อว่า 1,2,...,n ปมซึ่งเชื่อมกันด้วยเส้นเชื่อมที่มีน้ำหนัก เส้นเชื่อมจากปม i ไปยังปม j จะมีน้ำหนัก ให้ทำการหาเส้นทางซึ่งเป็นวงที่สั้นที่สุดซึ่งผ่านทุกปมและกลับมาที่จุดเดิม
แนวทางการแก้ปัญหา
[แก้]- โดยไม่เสียนัยสำคัญทั่วไป ให้กราฟเป็นกราฟบริบูรณ์ ซึ่งจะมีบางเส้นเชื่อมที่มีน้ำหนักเป็น +∞ ให้ เป็นเซตของวงจรที่ผ่านทุกปม และให้ เป็นความยาวของวงจร ปมละหนึ่งครั้งตามเงื่อนไข เราสามารถแทนแต่ละวงจรใน Χ ได้ด้วยการเรียงสับเปลี่ยน(permutation) ของปม 1,2,...,n ซึ่งจริงๆแล้วเราสามารถให้วงจร โดยที่ ได้โดยไม่เสียนัยสำคัญทั่วไป เราสามารถแปลงปัญหาทางเดินของพนักงานขายได้เป็นสมการที่ (7)
- (7)
สังเกตว่าขนาดของสมาชิกใน มีขนาดใหญ่มาก
- จากสมการที่ (7) จะเห็นว่าปัญหาเป็นลักษณะของการหาค่าที่เหมาะสมที่สุดซึ่งสามารถแก้ไขได้ด้วยวิธีการเอนโทรปีไขว้ แต่แทนที่จะเป็นลักษณะของการหาค่าที่มากที่สุดจะต้องเปลี่ยนเป็นปัญหาการหาค่าที่น้อยที่สุด โดยหากจะแก้ปัญหาด้วยวิธีการเอนโทรปีไขว้นั้นเราจะต้องกำหนด
- จะสร้างเส้นทางแบบสุ่มอย่างไร?
- จะทำการปรับปรุงพารามิเตอร์ในแต่ละรอบการทำงานอย่างไร?
- ก่อนที่จะหาวิธีการสร้างและปรับปรุงดังกล่าว จะขอนิยามเซตใหม่ขึ้นมาก่อน ให้
จะเห็นว่าการหาเส้นทางเดินตามเงื่อนไขบนเซตของเส้นทางเดินใน จะสมมูลกับปัญหาเส้นทางเดินของพนักงานขายเดิม และเพิ่มนิยาม เมื่อ มิฉะนั้น
ก็จะสามารถเปลี่ยนปัญหาทางเดินของพนักงานขายได้เป็นหาค่าที่ต่ำที่สุดของ บน
- วิธีง่ายๆวิธีหนึ่งที่จะสร้างทางเดินสุ่ม คือการสร้างลูกโซ่มาร์คอฟ(Markov Chain) ของกราฟ G เริ่มต้นที่ปม 1 และหยุดหลังจากขั้นที่ n ให้ คือเมตริกซ์ nxn เพื่อเปลี่ยนสถานะไปหนึ่งขั้นสำหรับลูกโซ่มาร์คอฟนี้ หรือจะพูดให้เข้าใจง่ายขึ้นเป็นภาษาทั่วไปก็คือเมตริกซ์ P จะเป็นส่วนที่ใช้เก็บเส้นทางเดินนั่นเอง กำหนดให้ในสมาชิกตามแนวเส้นทแยงมุมของ P เป็น 0 และสมาชิกอื่นๆใน P เป็นจำนวนจริงบวก ความหนาแน่นของความน่าจะเป็น ของ ที่ถูกจำกัดด้วยพารามิเตอร์เป็นเมตริกส์ P นิยามโดย
(8)
เมื่อ เป็นเซตของเส้นทางทั้งหมดที่ "จำนวนครั้ง" ที่ต้องเดินระหว่างปม i ไปปม j เป็น r ครั้ง
หลังจากนี้จะเริ่มเป็นการคำนวณเชิงคณิตศาสตร์ที่ซับซ้อนหากผู้สนใจสามารถไปศึกษาเพิ่มเติมได้ตามแหล่งอ้างอิง[5]
- หากจะสรุปเฉพาะใจความสำคัญให้เข้าใจอย่างสั้นๆสามารถสรุปได้ว่าในขณะนี้เราจะแทนการเปลี่ยนสถานะจากปมปัจจุบันไปยังปมใดๆไ้ด้ด้วยเมตริกซ์ซึ่งก็คือ นั่นเอง โดยเมตริกซ์นี้จะได้มาในแต่ละรอบที่ทำการสุ่มตัวอย่างและปรับปรุงพารามิเตอร์ ซึ่งทั้งสองขั้นตอนนี้สามารถทำได้โดย
- ขั้นสุ่มตัวอย่าง สามารถสุ่มตัวอย่างให้ได้ x ต่างๆได้ตามสมการที่ 8
- ขั้นปรับปรุง ปรับปรุงพารามิเตอร์ ของสมการที่ 8 ได้ด้วยตัวประมาณค่าของ ตามสมการที่ (9)
- (9)
ซึ่งรายละเอียดการได้มาซึ่งสมการที่ 10 นั้นผู้สนใจสามารถไปค้นคว้าได้ตามแหล่งอ้่างอิงที่ได้ระบุไว้ข้างต้น
เมื่อเราสามารถนิยามว่าจะสุ่มตัวอย่างและปรับปรุงได้อย่างไรแล้วนั้น เราก็จะสามารถสร้างขั้นตอนวิธีเพื่อที่จะแก้ปัญหานี้ได้ดังรหัสเทียมด้านล่าง
รหัสเทียมสำหรับปัญหา
[แก้]1 ตั้งค่า และ 2 t = 0 /*ตัวนับจำนวนรอบ*/ 3 ทำ 4 t = t + 1 5 ตั้งค่าในในหลักที่ ของ เป็น 0 6 ทำการทำค่าในแต่ละแถวของ ให้เป็นมาตรฐาน(normalize) //เฉลี่ยค่าในแต่ละแถวให้รวมกันได้ 1 7 ใช้สมการที่ (8) สร้าง ด้วยพารามิเตอร์ 8 ทำการปรับปรุงค่าให้ได้ ในแต่ละแถว i และหลักที่ j ตามสมการที่ (9) 9 ระหว่างที่ t < n-1 // ถ้ายังสร้างลำดับของทางเดินไม่ครบทุกจุด 10 คืนค่า
ดูเพิ่ม
[แก้]โปรแกรมภาษา C++ ของ Shark Machine Learning Library เก็บถาวร 2013-11-18 ที่ เวย์แบ็กแมชชีน
อ้างอิง
[แก้]- ↑ R. Y. Rubinstein. The cross-entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability, 2:127–190, 1999.
- ↑ R. Y. Rubinstein. Combinatorial optimization, cross-entropy, ants and rare events. In S. Uryasev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Applications, pages 304–358, Dordrecht, 2001. Kluwer.
- ↑ "Conference on the Occasion of R.Y. Rubinstein's 70th Birthday". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2010-09-30. สืบค้นเมื่อ 2011-09-29.
- ↑ R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John Wiley & Sons, New York, second edition, 2007.
- ↑ Pieter-Tjerk de Boer. A Tutorial on the Cross-Entropy Method, P.25 - 27.