การแปลงฟูรีเยต่อเนื่อง
บทความนี้ไม่มีการอ้างอิงจากแหล่งที่มาใด |
ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
การแปลงฟูรีเยต่อเนื่อง (อังกฤษ: continuous Fourier transform) เป็นตัวดำเนินการเชิงเส้นแบบหนึ่งซึ่งทำการแมพฟังก์ชันหนึ่งไปยังอีกฟังก์ชันหนึ่ง อีกนัยหนึ่งการแปลงฟูรีเยนั้นเป็นการแยกองค์ประกอบของฟังก์ชัน ตามสเปกตรัมของความถี่ที่มีค่าต่อเนื่อง และใช้หมายถึง ค่าสัญญาณใน "โดเมนของความถี่" ในทางฟิสิกส์และวิศวกรรม
(ดูเพิ่มเติมที่บทความหลัก การแปลงฟูรีเย)
นิยาม
[แก้]สมมุติ f เป็นฟังก์ชัน ที่มีค่าเป็นจำนวนเชิงซ้อน และสามารถหาปริพันธ์ลูเบกได้ การแปลงฟูรีเยต่อเนื่อง F และการแปลงกลับ จะกำหนดโดย
การแปลงฟูรีเยต่อเนื่อง | การแปลงกลับ |
---|---|
โดยที่ จำนวนจริง ω คือค่าความถี่เชิงมุม และมีค่าของการแปลง F(ω) เป็นจำนวนเชิงซ้อน ประกอบด้วย ขนาด และ มุม ขององค์ประกอบของฟังก์ชัน f(t) ที่แต่ละความถี่
สัมประสิทธิ์ของการปรับขนาด (normalization factor) ที่อยู่ในส่วนการแปลง และ การแปลงกลับนั้น สามารถเปลี่ยนแปลงได้ โดยมีเงื่อนไขที่ผลคูณของสัมประสิทธิ์การแปลงไปและกลับ จะต้องเท่ากับ เช่น อาจเลือกสัมประสิทธิ์ของการแปลงเท่ากับ 1 และสัมประสิทธิ์ของการแปลงกลับเท่ากับ (ซึ่งเป็นค่าที่นิยมใช้ในทางฟิสิกส์และวิศวกรรม ส่วนค่าสัมประสิทธิ์ที่ใช้ในนิยามด้านบนนั้นนิยมใช้ในทางคณิตศาสตร์เนื่องจากความสมมาตร) เหตุผลของเงื่อนไขผลคูณของสัมประสิทธิ์นี้ เพื่อให้การแปลงครบรอบนั้นเป็นการแปลงเอกลักษณ์ เช่น เมื่อทำการแปลง f(t) ไปเป็น F(ω) และแปลงกลับ จะได้ f(t) โดยไม่มีการเปลี่ยนแปลงขนาด เรียกคุณสมบัติว่า ยูนิแทรี (unitary)
ในทางฟิสิกส์และวิศวกรรม อาจใช้การแปลงไปเป็นฟังก์ชันของความถี่ แทนที่จะเป็นความถี่เชิงมุม ω นิยมใช้สัญลักษณ์ f หรือ แทนความถี่โดยที่
ตารางต่อไปนี้สรุปการแปลงฟูรีเยต่อเนื่องแบบต่างๆ ที่นิยมใช้ เพื่อป้องกันความสับสน ในตารางข้างล่างนี้ f หมายถึงความถึ่ ส่วนฟังก์ชัน ใช้ x(t) แทน f(t) ส่วนเนื้อหาในหัวข้อถัดๆไป จะใช้การแปลงแบบแรกในตารางเป็นหลัก
ความถี่เชิงมุม (rad/s) |
ยูนิแทรี |
|
ไม่เป็นยูนิแทรี |
| |
ความถี่ (hertz) |
ยูนิแทรี |
|
รูปทั่วไป
[แก้]คู่ของการแปลงไปกลับดังกล่าวข้างต้น จึงสามารถเขียนอยู่ในรูปทั่วไปดังนี้
โดยที่ ค่าคงที่ a และ b เป็นจำนวนจริงใด ๆ ที่สามารถเลือกได้โดยอิสระตามบริบท ของการประยุกต์ใช้งาน ตามบริบทของบทความนี้ในนิยามข้างต้นเลือก สำหรับการแปลงไม่เป็นยูนิทารี
ค่า a และ b ที่นิยมใช้ใน การประมวลผลสัญญาณคือ ซึ่งในกรณีนี้ จะหมายถึงความถี่ (แทนที่จะเป็นความถี่เชิงมุม) และมักจะเขียนแทนด้วยสัญลักษณ์ หรือ f ในกรณีที่ a และ b เป็นค่าที่มีหน่วย ผลคูณของทั้งสองจะต้องเป็นค่าทีไม่มีหน่วย เช่น หาก a มีหน่วยเวลา b จะมีหน่วยเป็น เฮิรตซ์ หรือ เรเดียนต่อวินาที
การแปลงในมิติที่สูงขึ้น
[แก้]สำหรับฟังก์ชัน f(x) ของ เวกเตอร์ x ซึ่งเป็นเวกเตอร์ในปริภูมิมิติ N และ k (หรือเรียก เวกเตอร์คลื่น) เป็นเวกเตอร์ในปริภูมิของการแปลง การแปลงฟูรีเยต่อเนื่องจะกำหนดโดย
โดยที่ dx เป็นอนุภาคของปริมาตรในมิติ N และสัญลักษณ์การคูณในค่ายกกำลัง หมายถึง การคูณภายใน (dot product) และจากคุณสมบัติ ออทอโกนัล ในมิติ N:
เราจะได้การแปลงกลับ ดังนี้:
คู่ของการแปลง
[แก้]ตรารางแสดงคู่ของการแปลงที่สำคัญ โดยใช้การแปลงตามนิยามในตอนต้นของบทความ โดยที่สัญลักษณ์ หมายถึง
คุณสมบัติ | ฟังก์ชัน | ผลการแปลงฟูรีเย | |
---|---|---|---|
ความเป็นเชิงเส้น | |||
การสลับ * | |||
การเลื่อน (translation) | |||
การมอดูเลต (modulation) | |||
สังยุค (conjugation) | |||
การสเกล | |||
การคอนโวลูท (convolution) * | |||
การคูณ * | |||
อนุพันธ์ของเวลา | |||
อนุพันธ์ของความถี่ | |||
ปฏิยานุพันธ์ของเวลา |
หมายเหตุ : * คือ คู่ของการแปลง ที่อาจมีสัมประสิทธิ์ แตกต่างไป ขึ้นกับสัมประสิทธิ์ของการปรับขนาดที่ใช้ในนิยามของการแปลง