ในทางฟิสิกส์ ฟังก์ชันก่อกำเนิด (Generating function approach) คือการใช้อนุพันธ์ย่อยสร้างสมการเชิงอนุพันธ์ที่อธิบายถึงพลศาสตร์ของระบบ ตัวอย่างทั่วไป เช่น ฟังก์ชันแบ่งส่วน (Partition function) ของกลศาสตร์สถิติ หรือฮามิลโทเนียน (Hamiltonian) หรือฟังก์ชันที่ทำหน้าที่แสดงความสัมพันธ์ระหว่าง 2 เซตของตัวแปรคาโนนิคัล (Canonical variable) สำหรับการแปลงแบบบัญญัติ (Canonical transformation)
สำหรับการแปลงแบบบัญญัติ เพื่อตรวจสอบความถูกต้องของการแปลงฟังก์ชันระหว่าง (q, p, H) และ (Q, P, K) ซึ่งทั้งสองเซตจะต้องเป็นไปตามหลักการฮามิลตัน (Hamilton's principle) โดยสามารถเขียนสมการลากรานจ์ได้ คือ และ ตามลำดับ โดยที่การแปลงเลอจองก์ (Legendre transform) จะต้องมีค่าคงตัว นั่นคือ :
ทั้งสองสมการจะได้ความสัมพันธ์ ดังนี้
โดยที่ G จะเป็นฟังก์ชันก่อกำเนิด ขึ้นกับพิกัดและโมเมนตัมทั้งในระบบเก่า (q หรือ p) และระบบใหม่ ระบบเก่า (Q หรือ P) และ λ จะเป็นตัวปรับขนาดของการแปลง (Scale transformation) สำหรับการแปลงแบบบัญญัติจะให้
สำหรับการแปลงแบบบัญญัติ จะมีฟังก์ชันก่อกำเนิดทั้งหมด 4 รูปแบบ ดังนี้
รูปแบบที่ 1 ของฟังก์ชันก่อกำเนิด
[แก้]
ขึ้นกับพิกัดของทั้งระบบเก่าและใหม่
สามารถเขียนสมการได้ ดังนี้
เนื่องจากพิกัดระบบเก่าและใหม่เป็นอิสระต่อกัน ดังนั้นสมการข้างต้นจะเป็นจริงก็ต่อเมื่อ
รูปแบบที่ 2 ของฟังก์ชันก่อกำเนิด
[แก้]
ขึ้นกับพิกัดของระบบเก่ากับโมเมนตัมของระบบใหม่
สามารถเขียนสมการได้ ดังนี้
เนื่องจากพิกัดของระบบเก่าและโมเมนตัมของระบบใหม่เป็นอิสระต่อกัน ดังนั้นสมการข้างต้นจะเป็นจริงก็ต่อเมื่อ
รูปแบบที่ 3 ของฟังก์ชันก่อกำเนิด
[แก้]
ขึ้นกับโมเมนตัมของระบบเก่ากับพิกัดของระบบใหม่
สามารถเขียนสมการได้ ดังนี้
เนื่องจากโมเมนตัมของระบบเก่าและพิกัดของระบบใหม่เป็นอิสระต่อกัน ดังนั้นสมการข้างต้นจะเป็นจริงก็ต่อเมื่อ
รูปแบบที่ 4 ของฟังก์ชันก่อกำเนิด
[แก้]
ขึ้นกับโมเมนตัมของทั้งระบบเก่าและใหม่
สามารถเขียนสมการได้ ดังนี้
เนื่องจากโมเมนตัมของระบบเก่าและใหม่เป็นอิสระต่อกัน ดังนั้นสมการข้างต้นจะเป็นจริงก็ต่อเมื่อ