ข้ามไปเนื้อหา

ไฟล์:Birthday paradox probability.svg

ไม่รองรับเนื้อหาของหน้าในภาษาอื่น
จากวิกิพีเดีย สารานุกรมเสรี

ดูภาพที่มีความละเอียดสูงกว่า ((ไฟล์ SVG, 720 × 540 พิกเซล, ขนาดไฟล์: 51 กิโลไบต์))

Wikimedia Commons logo รูปภาพหรือไฟล์เสียงนี้ ต้นฉบับอยู่ที่ คอมมอนส์ รายละเอียดด้านล่าง เป็นข้อความที่แสดงผลจาก ไฟล์ต้นฉบับในคอมมอนส์
คอมมอนส์เป็นเว็บไซต์ในโครงการสำหรับเก็บรวบรวมสื่อเสรี ที่ คุณสามารถช่วยได้

ความย่อ

คำอธิบาย
English: In probability theory, the birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99% probability is reached with just 57 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (except February 29) is equally probable for a birthday.
วันที่
แหล่งที่มา งานของตัว
ผู้สร้างสรรค์ Guillaume Jacquenot
SVG genesis
InfoField
 
ซอร์สโค้ดของ SVG นี้ตรวจสอบถูกต้องแล้ว
 
ไฟล์ภาพกราฟิกส์เวกเตอร์นี้ สร้างขึ้นโดยใช้ Matplotlib
รหัสต้นฉบับ
InfoField

Python code

# -*- coding: utf-8 -*-
#
# Script to generate in English and French, graphs for the
# birthday problem.
#
# **************************************************************
# http://en.wikipedia.org/wiki/Birthday_problem
# From Wikipedia, the free encyclopedia:
# In probability theory, the birthday problem or birthday
# paradox concerns the probability that, in a set of n
# randomly chosen people, some pair of them will have the
# same birthday. By the pigeonhole principle, the probability
# reaches 100% when the number of people reaches 367
# (since there are 366 possible birthdays, including February
# 29). However, 99% probability is reached with just 57 people,
# and 50% probability with 23 people. These conclusions are
# based on the assumption that each day of the year (except
# February 29) is equally probable for a birthday.
#
# The mathematics behind this problem led to a well-known
# cryptographic attack called the birthday attack, which
# uses this probabilistic model to reduce the complexity
# of cracking a hash function.
#
# Text under the
# Creative Commons Attribution-ShareAlike License
# **************************************************************
#
#
# Guillaume Jacquenot
# 2012/12/16

from pylab import *
import numpy as np

def makePlot(
        generateEnglishPlot = True,
        outputFilename = r'Birthday_paradox.svg',
        useYLogScale = False):
    N=91
    n = np.arange(float(N))
    pbar=np.exp(-n* (n-1) / (2.0*365.0))
    p=1.0-pbar

    n05 = 0.5*(1.0+np.sqrt(1-8.0*365.0*np.log(1.0-0.5)))
    plot([n05,n05],[0.0,0.5],c='k', linestyle='--')
    plot([0.0,n05],[0.5,0.5],c='k', linestyle='--')
    text(23.5,0.02,' ~23')
    if generateEnglishPlot:
        plot(n,p   ,c='r',label = unicode('Probability of a pair', 'utf8'))
        plot(n,pbar,c='b',label = unicode('Probability of no matching pair', 'utf8'))
    else:
        plot(n,p   ,c='r',label = unicode('Probabilité de coïncidence', 'utf8'))
        plot(n,pbar,c='b',label = unicode('Probabilité de non-coïncidence', 'utf8'))

    legend(loc='right')
    xlim(0, N)
    if useYLogScale:
        ylim(1e-6, 1)
        ax = gca()
        ax.set_yscale('log')
    else:
        ylim(0, 1)
        yticks([0.0,0.2,0.4,0.5,0.6,0.8,1.0])
    xticks(range(0, N, 10))
    grid(True, ls='-', c='#a0a0a0')
    if generateEnglishPlot:
        xlabel('Number of people')
        ylabel('Probability')
    else:
        xlabel('Nombre de personnes')
        ylabel(unicode('Probabilité', 'utf8'))
    savefig(outputFilename)
    show()

makePlot(generateEnglishPlot = True, outputFilename = r'Birthday_paradox.svg')
makePlot(generateEnglishPlot = False, outputFilename = r'Paradoxe_anniversaire.svg')

การอนุญาตใช้สิทธิ

ข้าพเจ้า ในฐานะผู้ถือลิขสิทธิ์ของภาพหรือสื่อนี้ อนุญาตให้ใช้ภาพหรือสื่อนี้ภายใต้เงื่อนไขต่อไปนี้
w:th:ครีเอทีฟคอมมอนส์
แสดงที่มา อนุญาตแบบเดียวกัน
คุณสามารถ:
  • ที่จะแบ่งปัน – ที่จะทำสำเนา แจกจ่าย และส่งงานดังกล่าวต่อไป
  • ที่จะเรียบเรียงใหม่ – ที่จะดัดแปลงงานดังกล่าว
ภายใต้เงื่อนไขต่อไปนี้:
  • แสดงที่มา – คุณต้องให้เกียรติเจ้าของงานอย่างเหมาะสม โดยเพิ่มลิงก์ไปยังสัญญาอนุญาต และระบุหากมีการเปลี่ยนแปลง คุณอาจทำเช่นนี้ได้ในรูปแบบใดก็ได้ตามควร แต่ต้องไม่ใช่ในลักษณะที่แนะว่าผู้ให้อนุญาตสนับสนุนคุณหรือการใช้งานของคุณ
  • อนุญาตแบบเดียวกัน – หากคุณดัดแปลง เปลี่ยนรูป หรือต่อเติมงานนี้ คุณต้องใช้สัญญาอนุญาตแบบเดียวกันหรือแบบที่เหมือนกับสัญญาอนุญาตที่ใช้กับงานนี้เท่านั้น

คำบรรยายโดยย่อ

เพิ่มคำบรรยายทรรทัดเดียวเพื่อขยายความว่าไฟล์นี้มีอะไร

รายการที่แสดงอยู่ในไฟล์นี้

ประกอบด้วย

media type อังกฤษ

image/svg+xml

checksum อังกฤษ

3b38941255998a827e98c5fab5e563dc1bf89d10

data size อังกฤษ

52,556 ไบต์

540 พิกเซล

720 พิกเซล

ประวัติไฟล์

คลิกวันที่/เวลาเพื่อดูไฟล์ที่ปรากฏในขณะนั้น

วันที่/เวลารูปย่อขนาดผู้ใช้ความเห็น
ปัจจุบัน04:01, 17 ธันวาคม 2555รูปย่อสำหรับรุ่นเมื่อ 04:01, 17 ธันวาคม 2555720 × 540 (51 กิโลไบต์)GjacquenotUser created page with UploadWizard

หน้าต่อไปนี้ โยงมาที่ภาพนี้:

การใช้ไฟล์ข้ามโครงการ

วิกิอื่นต่อไปนี้ใช้ไฟล์นี้:

ข้อมูลเกี่ยวกับภาพ