เลขคณิตมอดุลาร์
บทความนี้ยังต้องการเพิ่มแหล่งอ้างอิงเพื่อพิสูจน์ความถูกต้อง |
![]() | ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
เลขคณิตมอดุลาร์ (Modular arithmetic) เป็นระบบเลขคณิตที่มีรากฐานมาจากระบบจำนวนเต็มทั่วไป แต่จำนวนในระบบนี้จะมีการหมุนกลับในลักษณะเดียวกันกับเข็มนาฬิกาเมื่อมีค่าถึงค่าบางค่าที่กำหนดไว้ ซึ่งค่านี้จะเรียกว่า มอดุลัส กล่าวคือ ตัวเลขที่มีค่าเกินค่าของมอดุลัส จะถูกปรับค่าให้เป็นเศษของจำนวนนั้นเมื่อหารด้วยมอดุลัส ยกตัวอย่างเช่น ภายใต้มอดุลัสที่เป็น เลข จะถูกปรับให้เหลือ หรือ ผลบวกของ กับ ก็คือ
การสมภาคกันของจำนวน
[แก้]เราจะกล่าวว่าจำนวนเต็ม และ สมภาคกัน ภายใต้มอดุโล ได้เมื่อผลต่างของสองจำนวนนั้นสามารถหารลงตัวได้ด้วย หรืออาจจะกล่าวได้อีกอย่างคือ จำนวนเต็ม กับ เมื่อหารด้วย จะเหลือเศษเท่ากัน การสมภาคกันของ และ สามารถเขียนได้ในรูป
ตัวอย่างเช่น
ความสัมพันธ์ของการสมภาคกันเป็นความสัมพันธ์สมมูล (equivalence relation) และชั้นสมมูล (equivalence class) ของจำนวนเต็ม a สามารถเขียนได้ในรูป [a]n ซึ่งความสัมพันธ์สมมูลตัวนี้มีคุณสมบัติเพิ่มเติมอีกหลายอย่าง ยกตัวอย่างเช่น: ถ้า
และ
แล้ว
และ
ประวัติ
[แก้]คาร์ล ฟรีดริช เกาส์เป็นผู้นำเสนอเลขคณิตมอดุลาร์ในหนังสือ Disquisitiones Arithmeticae ในปีค.ศ. 1801 (พ.ศ. 2344)
คุณสมบัติ
[แก้]ถ้า a ≡ b (mod n) แล้ว และ b ≡ c (mod n), ดังนั้น a ≡ c (mod n)
ดูเพิ่ม
[แก้]แหล่งข้อมูลอื่น
[แก้]- ในบทความ modular art[ลิงก์เสีย] แสดงการประยุกต์ใช้เลขคณิตมอดุลาร์ในดนตรี