ข้ามไปเนื้อหา

ขั้นตอนวิธีของโบรุฟกา

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก ขั้นตอนวิธีโบรุฟกา)

en:Jin Yong

ขั้นตอนวิธีโบรุฟกา (อังกฤษ: Borůvka's algorithm) คือขั้นตอนวิธีสำหรับหาต้นไม้ทอดข้ามน้อยที่สุดในกราฟที่ทุกเส้นเชื่อมมีน้ำหนักไม่เท่ากัน

ประวัติที่มา

[แก้]

ทฤษฏีนี้ได้จำหน่ายขึ้นในปี ค.ศ. 1962 โดย Otakar Borůvka เพื่อเป็นวิธีการสำหรับสร้างโครงข่ายไฟฟ้าที่มีประสิทธิภาพสำหรับ เขตมอเรเวีย-ไซลีเชีย เมืองออสตราวา ใน สาธารณรัฐเช็ก หลังจากนั้นขั้นตอนวิธีนี้ได้ถูกค้นพบอีกครั้งโดย Florek, Łukasiewicz, Perkal, Steinhaus, และ Zubrzycki ในปี ค.ศ. 1951 และค้นพบโดย Sollin ในปี ค.ศ. 1965 เนื่องจากว่า Sollin เป็นนักวิทยาศาสตร์คอมพิวเตอร์เพียงคนเดียวในที่กล่าวมาข้างต้นอาศัยอยู่ในประเทศที่ใช้ภาษาอังกฤษเป็นภาษาประจำชาติ ขั้นตอนวิธีนี้จึงมักถูกเรียกในอีกชื่อหนึ่งว่า ขั้นตอนวิธีโซลลิน

เนื้อหา

[แก้]
ตัวอย่างการทำงาน
ตัวอย่างการทำงาน

ขั้นตอนวิธีนี้ถือว่าเป็นขั้นตอนวิธีแบบละโมบ เริ่มต้นจากการพิจารณาจุดยอดทีละจุดและทำการเลือกเส้นเชื่อมที่เชื่อมจุดยอดนั้นและจุดยอดใดๆที่มีน้ำหนักน้อยที่สุดและไม่ทำให้เกิดวัฏจักรโดยไม่คำนึงว่าเส้นเชื่อมนั้นได้ถูกเลือกไปแล้ว ทำเช่นนี้ไปเรื่อยๆจนกว่า จุดเชื่อมทุกจุดจะกลายเป็น ต้นไม้ทอดข้าม

โครงสร้างข้อมูล

[แก้]

โครงสร้างข้อมูลที่สำคัญสำหรับขั้นตอนวิธีโบรุฟกา คือ กราฟที่จะใช้ต้องเป็นกราฟแบบไม่มีทิศทาง[1]

รหัสเทียม

[แก้]

Given G = (V,E)

T = graph consisting of V with no edges
 while T has < n-1 edges do
  for each connected component C of T do
  e = min cost edge (v,u) s.t. v in C and u not in C
  T := T union {e}[2]

การวิเคราะห์รหัสเทียม

[แก้]

ในแต่ละการวนของวงวนนั้น ต้อง

  • หา connected component ซึ่งสามารถหาได้ในเวลา โดยใช้การค้นแบบจำกัดความลึก
  • หาเส้นเชื่อมที่สั้นที่สุด สามารถหาได้ในเวลา โดยการเปรียบเทียบ ทุกเส้นเชื่อมของ และ กับเส้นเชื่อมที่สุดที่สุดของ และเส้นเชื่อมที่สั้นที่สุดชอง

จำนวนของ connected component จะลดลงโดยประมาณ 2 เท่าต่อการวนหนึ่งรอบ ดังนั้นจึงสามารถทราบได้ว่ามีการวนมากที่สุด ครั้ง ดังนั้น เวลาที่ใช้ทั้งหมดจึงเป็น [1]

ขั้นตอนวิธีอื่นๆที่แก้ไขปัญหาเดียวกัน

[แก้]

ขั้นตอนวิธีสำหรับหาต้นไม้ทอดข้ามน้อยที่สุด นอกจากขั้นตอนวิธีนี้แล้วยังรวมไปด้วยขั้นตอนวิธีครูสกาลและขั้นตอนวิธีพริม สำหรับขั้นตอนวิธีที่เร็วกว่านั้น สามารถคำนวณได้โดยขั้นตอนวิธีแบบสุ่ม และใช้ขั้นตอนวิธีพริมและขั้นตอนวิธีโบรุฟการ่วมกัน ซึ่งจะสามารถคำนวณได้ในเวลา [3] สำหรับขั้นตอนวิธีเชิงกำหนดที่เร็วที่สุดก็ใช้ขั้นตอนวิธีโบรุฟการ่วมด้วย มีเวลาการทำงาน โดย เป็นฟังก์ชันผกผันของฟังก์ชันแอคเคอร์แมน

อ้างอิง

[แก้]
  1. 1.0 1.1 เอกสารประกอบคำสอนขั้นตอนวิธีโบรุฟกา ของ University of California Irvine [ลิงก์เสีย]
  2. "เอกสารประกอบคำสอนขั้นตอนวิธีโบรุฟกา ของ University of Texas at Austin". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2011-12-03. สืบค้นเมื่อ 2011-09-21.
  3. Boruvka's algorithm Articles and Information