สมบัติการแจกแจง
ในทางคณิตศาสตร์ สมบัติการแจกแจง (อังกฤษ: distributivity) คือสมบัติหนึ่งที่สามารถมีได้บนการดำเนินการทวิภาค ซึ่งเป็นกรณีทั่วไปของกฎการแจกแจงจากพีชคณิตมูลฐาน ตัวอย่างเช่น
- 2 × (1 + 3) = (2 × 1) + (2 × 3) = 8
ข้างซ้ายของสมการข้างต้น 2 คูณเข้ากับผลบวกของ 1 กับ 3 ส่วนข้างขวา 2 คูณเข้ากับ 1 และ 3 แต่ละตัวแยกกัน แล้วค่อยนำผลคูณเข้ามาบวก เนื่องจากตัวอย่างข้างต้นให้ผลลัพธ์เท่ากันคือ 8 เราจึงกล่าวว่า การคูณด้วย 2 แจกแจงได้ (distribute) บนการบวกของ 1 กับ 3
เราสามารถแทนที่จำนวนเหล่านั้นด้วยจำนวนจริงใด ๆ แล้วทำให้สมการยังคงเป็นจริง เราจึงกล่าวว่า การคูณของจำนวนจริง แจกแจงได้บนการบวกของจำนวนจริง สมบัติการแจกแจงจึงต้องเกี่ยวข้องกับการดำเนินการสองชนิด
นิยาม
[แก้]กำหนดให้การดำเนินการทวิภาค · และ + บนเซต S และ x, y, z เป็นสมาชิกใด ๆ ของเซต S
- การดำเนินการ · จะเป็นการดำเนินการ แจกแจงข้างซ้าย บนการดำเนินการ + ถ้า
- การดำเนินการ · จะเป็นการดำเนินการ แจกแจงข้างขวา บนการดำเนินการ + ถ้า
- การดำเนินการ · จะเป็นการดำเนินการ แจกแจง (distributive) บนการดำเนินการ + ถ้าสามารถแจกแจงได้ทั้งข้างซ้ายและข้างขวา [1]
การดำเนินการ · และ + มิได้หมายความว่าจะต้องเป็นแค่การคูณกับการบวกเท่านั้น แต่หมายถึงการดำเนินการใด ๆ ที่ตรงตามเงื่อนไขข้างต้น โปรดสังเกตว่าเมื่อการดำเนินการ · มีสมบัติการสลับที่ ดังนั้นเงื่อนไขทั้งสามข้างต้นจะเทียบเท่ากันโดยตรรกะ
ตัวอย่าง
[แก้]- การคูณของจำนวนแจกแจงได้บนการบวก ซึ่งใช้ได้กับจำนวนหลายชนิดตั้งแต่จำนวนธรรมชาติไปจนถึงจำนวนเชิงซ้อนและจำนวนเชิงการนับ (cardinal number)
- ในทางตรงข้าม การคูณของจำนวนเชิงอันดับที่ (ordinal number) แจกแจงทางซ้ายได้อย่างเดียวบนการบวก ไม่แจกแจงข้างขวา
- การคูณเมทริกซ์แจกแจงได้ทั้งข้างซ้ายและข้างขวาบนการบวก แต่ผลที่ได้ไม่เท่ากัน (สลับที่ไม่ได้)
- ยูเนียนของเซตแจกแจงได้บนอินเตอร์เซกชัน และอินเตอร์เซกชันก็แจกแจงได้บนยูเนียน นอกจากนั้นอินเตอร์เซกชันก็แจกแจงได้บนผลต่างสมมาตรของเซต (symmetric difference)
- ในทางตรรกศาสตร์ การเลือก (disjunction "or") แจกแจงได้บนการเชื่อม (conjunction "and") และการเชื่อมก็สามารถแจกแจงได้บนการเลือก นอกจากนั้นการเชื่อมก็แจกแจงได้บนการเลือกเฉพาะ (exclusive disjunction "xor")
- สำหรับจำนวนจริงหรือเซตอันดับทุกส่วน (totally ordered set) การหาค่าสูงสุดแจกแจงได้บนการหาค่าต่ำสุด และการหาค่าต่ำสุดแจกแจงได้บนการหาค่าสูงสุด
- สำหรับจำนวนเต็ม การหาตัวหารร่วมมากแจกแจงได้บนการหาตัวคูณร่วมน้อย และการหาตัวคูณร่วมน้อยแจกแจงได้บนการหาตัวหารร่วมมาก
- สำหรับจำนวนจริง การบวกสามารถแจกแจงได้บนการหาค่าสูงสุดและการหาค่าต่ำสุด
อ้างอิง
[แก้]- ↑ Ayres, Frank, Schaum's Outline of Modern Abstract Algebra, McGraw-Hill; 1st edition (June 1, 1965). ISBN 0-07-002655-6.